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Comparison of the C-band dual-mode dielectric-function filter and a

C-band air-filled dual-mode filter.
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Singularity Extraction from the Electric Green’s
Function for a Spherical Resonator

M. BRESSAN anD G. CONCIAURO

Abstract —The electric dyadic Green’s function for a spherical resonator
is expressed as a sum of two dyadics given in closed form and a dyadic
given in the form of a series. The first two dyadics diverge at the source
point and they represent a low-frequency approximation for the Green’s
function, valid up to frequencies moderately lower than the resonant
frequency of the dominant mode. The dyadic given in the form of a series
is finite at the source and takes into account cavity resonances. It is given
either as a one-index series, whose terms are transcendental functions of
the frequency, or as a double series, whose terms are rational functions of
the frequency. Both series have very good converging properties every-
where inside the cavity.

1. INTRODUCTION

The electric field at any point inside a cavity resonator bounded
by a perfectly conducting wall, filled with a linear, isotropic,
homogeneous medium with constitutive parameters €, p, and
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excited by time-harmonic (exp jwt) electric sources may be ex-
pressed as
o = , ~ ., L-J(#)
E(r) ]wpshinofV_VaGe(r,r Jk)-J(7) dv YRR

(1)
In this expression, r, r” are the observation and the source points,
respectively, k = w\/e_p , J is the current density, G, is the dyadic
Green’s function of the electric type, ¥ is the cavity volume, Vj is
a principal volume about » having dimensions proportional to §,
and, finally, L is a constant dyadic which is determined only
from the geometry of V; [1]. Numerical calculations of E may be
performed conveniently using a generalization of (1), differing
from it for ¥; being allowed to be finite and for the inclusion of a
further integral over V;, involving G, [2].

Green’s functions for bounded regions are usually given in the
form of modal expansions, obtained by general procedures such
as those described by Tai [3] and Felsen—Marcuvitz [4]. Examples
of these expansions are given in [5]-[8] and in the next section.
Though being of great theoretical interest, such modal series are
‘unsuitable for use in numerical algorithms (moment method, for
instance) which require the computation of the electric field
inside the source fegion. In this case, indeed, the Green’s function
must be computed at points #’ close to r, where the convergence
of the series is very poor due to the singularity of G, at ¥’ =r.
We recall that, in three-dimensional Green’s functions, this singu-
larity is of the order R™3, where R is the distance beiween the
source and the observation points.

This drawback can be avoided by using expressions where a
diverging term, expressed in closed form, is extracted from the
modal expansion of G,, so that the remaining series represents a
function finite at »’=r. This series, in fact, is expected to
converge very well everywhere. In this paper, we deduce an
expression of this type for a spherical resonator.
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In their general discussion on Green’s function for closed
regions, Howard and Seidel [9] considered the extraction of a
singular irrotational term which represents the quasi-static ap-
proximation of G,. As explained in the following, the extraction
of this term permits one to enucleate the dominant singularity
(R™?) of the Green’s function but, in spite of this, the residual
series still represents a function singular like R™'. For this
reason, though this series converges better than the original one,
its convergence is still poor when # and r’ are close to each other.
A numerical example in this connection will be given at the end
of this paper.

In a recent work, Daniele and Orefice [10] considered a decom-
position of the Green’s function into two modal series, the former
singular , the latter regular at the source.As discussed ina
previous paper by Daniele [11], the particular form of the singu-
lar series permits one to transform (1) in such a way to avoid the
problems deriving from the nonintegrability of the singularity of
the Green’s function. Anyway, it is pointed out that, also after
this transformation, the integral expression of the electric field
exhibits a kernel diverging like R™!. The series representing this
kernel is expected to have converging properties similar to those
of the Howard-Seidel residual series.

More recently [12], [13], we considered a new form of G,
consisting of the sum of three terms

G=G+G+§ 2
where G, represents the irrotational part of G, and G, + G’
represents its solenoidal part. Each of the three dyadics satisfies
the same boundary condition fulfilled by G,, that is,

nXG=0. 3)
For three-dimensional cavity resonators bounded by a single
conducting wall, the three dyadics are expressed as {13]
1

6=~ v g + 507 (42)
G, - SiR(l F%) G (r,r) (4b)
e(r)e(r) o

6/ = k2

LR
where 1 is the unit dyadic, R =r—r’, g, is a harmonic function
such that (1/47R + gy)/¢ represents the electrostatic potential
generated inside the cavity by a unity point charge placed at #’,
G? is a k-independent dyadic, everywhere finite and depending
on the boundary (the defining equation for G° is irrelevant for
the following discussion and it is not reported here), and e,, k,
are the normalized electric modal fields and the corresponding
resonant wavenumbers of the cavity.

The analysis reported in [13] permits one to state that the
diverging behavior of G, at R =0 is dictated only by the R-
dependent terms in (4a,b). Then, the decomposition (2) is ad-
vantageous because the diverging term

1 1 1 (7 RR
A4 87R R?

k 477R
is evidenced in closed form so that the remaining part of G, is
finite at R = 0 and, in principle, it may be represented by rapidly
converging expressions.

It is noted that G, explicitly exhibits the dominant singularity
of the Green’s function and coincides with the term extracted by
Howard and Seidel from the modal expansion. It is evident that,
by extracting only this term, the weaker singularity (R 1) is still
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contained in the remaining part of G, as stated above.

It is also noted that our expression, like those proposed by
Howard—Seidel and by Daniele—Orefice, permits one to trans-
form (1) into an alternative expression not requiring the evalua-
tion of a principal value integral, namely [13]

B =19 [ | g + solrr) | o) o

—jouf [G(r. )+ G(r.r O] I(F) do' (9)

where p=—(v-J)/jo represents the charge density. This ex-
pression may be recognized as the representation of the electric
field based on the scalar and the vector potentials in the Coulomb
gauge.

The case of a spherical resonator has been considered as an
example in the general discussion contained in [13], where a
method for the direct determination of g, and G° has been
outlined. In the present work, we determine explicit expressions
for g,, G°, and G’ for a spherical resonator and discuss the
converging properties of the expression of G, so obtained. The
procedure followed to determine G° differs from that outlined in
[13] because it starts from the known modal expansion of G, and
it does not require the solution of a new boundary value problem.

An interesting feature of our result is that g, and G° are
found in closed form. Furthermore, G’ is determined either as a
rapidly converging resonant-mode double-series of the type (4¢),
or as a more rapidly converging radially-guided-mode one-index
series. Due to their fast convergence, both of these series may be
truncated up to their first few terms without significant loss of
accuracy. When the resonant-mode series is truncated, the ob-
tained approximation is a rational function of k?, a feature that
may be advantageous in treating some problems, as evidenced in
[14].

II. MopAL EXPANSION OF G,

By following the general procedure described in [4, secs.
2.5,2.6,2.7], one can obtain the Green’s function of a spherical
resonator of radius a (Fig. 1) in the form

1 7 ! s ?
G‘=F(V XV X)) (V' Xv'Xr)s

+H(V X))V Xry)S”  (r#r).

(6)
In this expression, r, and 5} are the unit vectors in the directions
of r and ¢/, respectively, and the functions S’ and S” are given
by

2n+1

2(n m)

1 o0 n
S = e Y Pm m ’
cos[m(p —9)] (7a)
g = 1 S 2n+1 S 2An—-m)! . ,
4 21’1 n( n + 1) nz”l ’n( + )' P (COS &) Pn (COS 0 )

-cos[m(e—9)] (7b)

where r, &, @; r’, 9, ¢’ are the spherical coordinates of » and #’,
P are the associate Legendre functions, €, =2 for m =0,
€,, =1 for m# 0. Functions ¥, =Y, (r, 7", kYand Z,=Z (r, 7", k)

are the solutions of the equation

3? , n(n+1)[[ Y, ,
~2+k “T Z" =8(r—r)

ar

(®)
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1 2a |

r 1
The sphere and the unit vectors at the observation and the source
points.

Fig. 1.

subject to the following boundary conditions:

ad
5, 7=0,Z,=0atr=a. 9)

Y,, Z, finite at r=0;
Functions ¥, and Z, may be determined either in closed form or
as eigenfunction expansions. The closed-form solution has differ-
ent definitions in the intervals (0, r’) and (r/,a). For 0 <r <7/,
we obtain

_ Jn(kr) ’ . n_ N ;7 a

no k,;(ka) [nn(ka).]n(kr) nn(kr)fn(ka)] (10 )
Jn(Kr)

7, = {2 Umaka) fy k)= my (k) s (ka)] - (100)

where j, and #n, are the spherical Bessel functions, defined as

D= Fhnn®) 1) = Z (o)

and j/,n) are their derivatives. For ' < r <a, the expressions
for Y, a.nd Z, are deduced from (10) by interchanging » and #’.
The solution in the form of eigenfunctions expansion has a
unique expression in the whole interval (0, ), given by

g 2x72 j;,(k’ r) j,,(k;,pr’)

Y=Y, -
Jn ( np)

L a[x,,p-n(n—kl)](kﬁ,—kz)

(11a)
-3 jn(k,tpr) Jn(npr") (115)
; (k,?,,—k ) Ra(x,)
where x,, and x;, are the zeros of j, and j;, and
knp=%Xup/a  kypy=x;,/a

are the resonant wavenumbers of the TE and TM resonant
modes, respectively.

It is noted that, for any value of the index n, the different
values of m denote n degenerate modes; their total contribution
may be taken into account by substituting the finite summation
in (7) with a single term, as permitted by the well-known “ad-
dition formula” for the associate Legendre functions. It is thus
obtained
o0

5= 2w Ly TP (123)
1
5= 4r T sy 2P () (120)
1

where u=cosy (see Fig. 1) and P, functions are Legendre
polynomials.
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The explicit expression of G, in the form of a modal expansion
may be obtained by applying term-wise the dyadic differential
operators appearing in (6) to the series representing $’ and S”.
Depending on the use of (10) or (11), two types of expansions are
obtained: in the form of a one-index series (radially-guided-mode
expansion) or of a double series (resonant-mode expansion).
Convergence properties of both series are poor. In fact, numerical
calculations reveal that they converge slowly for r close to r’. As
an example, when a=1,r =049, ' =0.5, ¥ = 30°, convergence
of the one-index series is observed only after having added about
one thousand terms, whereas the same number of terms is not
sufficient to observe convergence in the case of the double series.
It is worth noting that when r is not close to #’, the one-index
series converges fairly well, whereas the convergence of the dou-
ble series remains slow.

IIL.

The electrostatic potential generated inside a spherical cavity
by a unit charge placed at r’ is easily determined by image theory

and is given by
1 /{1 a
Ine ( R —r’R,.) (13)

where R, =[r?+(a?/r")? —=2r(a®/r")ul'’? represents the dis-
tance between r and the image of the source point. Then,
comparing (13) with the argument of vV’ in (4a), g, is im-
mediately identified as

DETERMINATION OF g,

a 1 -
g0=—m=—m[1—2hu+h2] 172 (14)
where
'
h=—.
aZ
IV. DETERMINATION OF G2 IN FORM OF A SERIES
From (2), (4a), (4b), and (4c), we deduce
1 (7, BR), & T
8WR(I+ e )+G (r,r)= Jlim 3 akz(k G,). (19
On substitution of (6) and (12), we have
1 RR 0 , oo 1
87rR(I+ 2 )+G =(vxv xp)(v'xv X'O)sw
2 2n+1
E" n(n+1) "( )a 2 n(r r 0)
+(v Xro)(V’Xré)Z;
2 2n+1 ,
Zn ( +1) n(u) (r’r’o)‘
(16)

From (10), we deduce

9? , r ry"{ 2 r?
20 (0 = 2n+1( ) [2n—1_2n+3
2a°h" ! 2n® +3n* —5n-3
(n+1)(2r+1) | 2n+3)(2n—-1)(n+1)
2 ”2
_n(rr4r?) (17a)
2(2n+3)a?
’ _ r L "_ a ‘ n+1
Z,(r,r,0)= 2n+1(r,) 5 (17b)
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valid for 0 < r < r’. For r’ < r < a, similar equations hold, with r
and r’ interchanged on the right-hand side.

As stated in the Introduction, the dyadic (16) satisfies the
boundary condition (3). Since the singular term on the left-hand
side of (16) does not depend on the boundary, it follows that the
regular dyadic G° must depend on the radius a, in order to
match the boundary condition. Moreover, due to the fact that the
singular term by itself satisfies the boundary condition in the
limiting case of an infinite radius, it is clear that G must go to
zero when @ goes to infinity. On the other hand, the series
obtained on substitution of (17a,b) into the right-hand side of
(16) may be split into the sum of two series, the former indepen-
dent of a, the latter going to zero when a diverges. The consider-
ations above permit one to associate G° with these last series,
that is to say,

3
G\°=%(v xv Xp)(v'xXv'xn)

io P(w)h" ' 20’430 —5n—-3 r*+r7
T (2n+3)(n+1) n(n+1)(2n—1) 24’
00 P( )hn+1
—w—(v X ) (v’ XrO)Z v (18)

n(n+1) °

It is noted that this expression has been derived from (17) valid
for 0 < r < r’. The expression for r’ <r < a should be obtained
by interchanging r and r’. However, this interchange does not
modify the series in (18) so that this expression holds everywhere.

‘ V. DETERMINATION OF G
From (2), (4a), (4b), and (4c), we find

c-L 26 ) 1m L2 (12G
k kl‘l_IP (kG) Zakz(k Ge)

On substitution of (6) and (15), we obtain

G -G, (19)

G = (Vv XV X)) (V/XV'XK) = ! f ﬂp(”)(]
4r " n(n+1) " "
1 & 2n+1
+ ’ 7Y _—
(VXFO)(V ><"0)4 Zl n(n+1) n( )V (20)
where
() -Y(nr0) 1 8
n k2 2 3/{2 n(r r’ O) (213.)
v.=2z/(r,r, k)—2,(r,r',0). (21b)
Starting from (10), we obtain
(K w(ka) g, (kr’
g, - 2U7) [( ) (k) kr,)}
k Jr(ka)
v;(i)" 2
22n+0)\) | k2 2n-1 2n+3
ah™ 1 n(r*+r?)
(n+1)(2r+1) | 2(2n+3)
2n*+3nt-5n-3 s 1
- -1 2
(2n-DCn+3)(n+D) " 2 (222)
S Ckr) | n, (ka) j, (kr')
v, = —n,(kr’
n k |: Jn(ka) nn( r)

2n1+1[ (i) —ah"+1] (22b)
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valid for 0 < r < r’. For r' < r < a, similar equations hold with r
and r’ interchanged.
Alternative expressions are determined starting from (11)

e 1 2 a(k)

U;’=
(ki =) [ = (D] 2 ()
(23a)
2 2, (kpr) Ju (Kopr”)
Z (kz—kz) Gia(x) @0

Using these last expressions, (20) yields G’ in form of a
resonant-mode expansion, similar to the general expression (4c¢).

VL

By symmetry considerations, it is evident that: a) a current
element at r’, lying on the plane of » and r’, gives place at r to
an electric field lying on the same plane; b) a current element at
r’, perpendicular to r and r’, gives-place at r to a field per-
pendicular to the same plane. For this reason, the number of
components of G, is reduced by referring the field and the source
to the directions of the unit vectors r,,sy,f, and rf,s,%,,
respectively (see Fig. 1), where

COMPONENTS OF G,

r'xr
t0=|"x'| s =1ty X sy=1t, X1 (24)
In fact, G, may be expressed by a form of the type
6@ = rOr(;Grr' + rOS(I)Grs’ + sOr(;Gsr’ + SOS(,)G:J' + tOtOGtt (25)

which requires the specification of five components only. The
expressions which relate them to the nine components with
respect to the fundamental unit vectors of the spherical coordi-
nate system are reported in Appendix I.

By examining (14), (18), and (20), we see that the determina-
tion of the components of G, requires the differentiation of
functions depending only on the spatial variables r, r/, and u. It
may be shown that, when applied to a function of this type, the
dyadic differential operators involved in the calculation of G,
may be expressed as follows:

vVv'=nmg ara; Grar 0y aa;u 0% 6:)23“
RSP IERTY
(v xn)(v’'x O)——O—sé%—t;’:f)(u%+L) (26b)
(v xXv Xro)(V’XV'Xré)=%r5:i7Lz—rosérf;L%

2 ’ 2
+ so"o 9 ~ So% ( 9 ) —«a

arau rr’
Lhty &
rr’ drdr’' du

where

v=V1—u? =siny L= 2; 2ui
u?

ou’
It is noted that LP,(u)=— n(n+1)P,(u).
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On use of formulas (2), (26), (4a), (4b), (14), (18), and (20), G,
is determined in the form (25). We obtain

1 1 3rr'v? 1
G, = —|2u— +—
4ak? [R3 ( R? ) a°

(B~ h’u+hi* —2h + u)fos]

1 rr'v? 0 ,
+teR (Zu— +G.. +G, (272)
v 1 r>—rr'u 1
Gy=— (13" = 2R - hu 1) ff
Amk? [ R ( R? ) pl Vo
v r2—rr'u 0 ,
+ 877R(1+ 2 )+G,S,+Gm, (27b)
(ryv/,u,k)=—G (r,r,uk) (27¢)
1 1 { 3rv? 1
Gy = — —ult+—=(R*u—-3h+h?+u)f}
‘ 4'rrk2[R3( R ) pel ).
1 rr'v? ,
+m(u+ 5 )+G§,+G”, (27d)
SRS S I TR WY NS SR
G, = 47rk2[R3 7 f0}+8 R+G +G/, (27¢)
where f, is defined in (29a), and GJ,---, Gy, and G, -, G,

are the components of G and 5; , respectively.
The series representing G2, - -, G2 (deduced from (18)) can be

rrs”

summed (see Appendix II). It is obtained as follows:

1 r2+r? h—3u
o L 2 n—ou
GI'I’_ dma [(3 a +h +9)f1+f2 4 fO
rr+r? 3
—*(2—7 ] (28a)
v 3a?
G,f1'=—4—m(1— az)[ f3+f4]

vfo rPP+rt-24 ,
— 2
T6ma [3"' e fo| (28b)

2 h—
G.s(.)»'=ﬁ(1 ;2)(1_—")[3f1“uf3 ufy — Tuf03]

- A ~[u+ ?f7] (280)

G) = 4;(1 a)(1~—)[f3+f4] Tt (284)
where
=(1-2mu+hr?)""" (29a)
1 3 (F-2E 1
h= Sh[fo h(1+h)( sn B +f)] (29)
1/f,+h—
N
3
f3=m[(l+u)(l+h—2hu)fo
(1—u)F+2uE
] @
fa= S5 1+ (-1 f] (2%)

2h2
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In these expressions, F=F(B,K) and E=E(S,K) repre-
sent the elliptic integrals of the first and second kind, respectiv-
ely, of argument B = arcsin [Wh /(1 + h)] and modulus K

v(1+u)/2. It is noted that, in the limiting cases where A
and/or v vanish, (29b,c,d,e) are indeterminate. Anyway, an
accurate analysis reveals that f;, f,, f;, and f, remain finite and
that their values for small & and/or v can be calculated using the
formulas given in Appendix II.

The series representing the components of _G-s’ (deduced from
(20)) are

e f,,n(n +1)2n+1) P, (u) rff',z (302)

G _—E (2n+1) By () - ‘;—‘r] (30b)
=4iﬂz°;:,,(2n+1) %

)3 28] o

o z2)2] o

where P/ denotes the derivative of P,. On substitution of (22) or
(23) into (30), the components of G’ are obtained either in the
form of a one-index series or in the form of a double series. For
the sake of shortness, we omit writing down these formulas,
whose derivation, however, is trivial. It is observed that the
one-index series have different definitions in the intervals (0, r")
and (r’,a), whereas the double series have a unique definition
everywhere, The terms of the one-index series depend on k also
through the spherical Bessel functions, whereas the terms of the
double series are rational functions of k*. As expected, the
components of G, diverge when k approaches any of the reso-
nating values k,, or k;, defined above. The one-index series
diverge due to the denominators j,(ka) and j/(ka) in (22). The
double series diverge due to the denominators k2 — k2 and
k;?,—k?* in (23). When k is not coincident with a resonant
wavenumber, all series converge everywhere, r = r’ included.

It is noted that if the field is evaluated using (5), the only part
of G, involved in the calculation is G, + G,. The components Of
this dyadic are recognized in the last three terms in each one of
the expressions of (27).

VIL

The series representing the components of G’ are too com-
plicated to permit a simple analysis of their converging proper-
ties. Then we base our discussion on some numerical results.

Diagrams in Fig. 2 represent successive approximations of the
component G, as a function of the computing time. The first
approximation (labeled with a) consists of the contribution of
the term proportional to k=2 in (27a), i.e., the r#’ component of
the dyadic G, in (2). The second approximation (labeled with b)
includes the #* component of the dyadic G, ie it is obtained
by consxdermg all the terms in (27a), except G.. Subsequent
approximations (labeled with ¢, d,---) are obtamed by adding
each time a new term of the series representing G’ ((30a)) in the
form of a one-index series (continuous line) or of double series

CONVERGING PROPERTIES
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(dashed line). In the case of the double series, the terms are
added in order of increasing resonant wavenumbers. The radius
of the resonator and the positions of the observation and source
points are the same in the three cases considered in Fig. 2(a), (b),
and (c), whereas the values of k are different from one another.

In the case of Fig. 2(a), the frequency is moderately lower than
the resonant frequency of the dominant mode (k= k{,/5). In
this diagram, the dashed line was not reported, being nearly
coincident with the continuous line. It is noted that the ap-
proximation b is fairly good, i.e., the contribution of G/,, may be
neglected without a significant error.

In the case of Fig. 2(b), the frequency is fairly close to the
frequency of the dominant mode (k = 0.8 k{,). Both series repre-
senting G/,. converge very rapidly and the largest contribution
derives from their first term, which takes into account the domi-
nant resonance. It is noted that about three terms of both series
are needed to achieve an acceptable precision.

In the case of Fig. 2(c) (k=5k{;), the frequency exceeds the
resonant frequencies of thirty-nine modes and it is close to the
frequency of the TM,, mode. For this reason, the largest term in

* Fig. 4. Successive approximations of two expressions of G,
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the one-index series is the seventh, whereas the largest term in the
double series is the thirty-niinth. The series converge rapidly after
the seventh or the thirty-ninth terms, respectively. It is noted
that, when k increases, the number of significant terms increases
more rapidly in the double series than in the one-index series.
Numerical tests carried out for different positions of the ob-
servation and the source points showed that converging proper-
ties are not affected significantly by changes in these positions.
Similar results have been found for the other components of G.,.
In order to ascertain the utility of extracting the weakly singu-
lar dyadic G, from G,, besides the strongly singular dyadic G,,
converging properties of our expressions have been compared
with those of different expressions deriving from a representation
of G, of the type ‘
G - 1 A 1 —
g——;;vv(m+go)+q, (31)
where G, (i.e., the solenoidal part of G,, formerly split into G,
and G!) is expressed by a modal series, obtained by introducing
(6), (12), and (10) or (11) into the formula

Also, G, may be obtained in the form of a one-index or of a
double series, depending on the use of (10) or (11). It is pointed
out that (31) has the same form considered by Howard and Seidel
[9]. Figs. 3 and 4 show that the convergence of the component
G,,. derived from (31) (diagrams a) is much slower than the
convergence of the same component in the form derived from (2)
(diagrams b). This is true either in the case when G, and G/ are
represented by the one-index series (Fig. 3) or when they are
represented by the double series (Fig. 4). As said in the introduc-
tion, the slower convergence of (31) is ascribed to the inclusion of
the singularity R™! in the series representing G,.
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APPENDIX 1

The dyadic G,, referred to the fundamental unit vectors of the
spherical coordinate system, has the form

G = 1 1G,, + 1 %G, + neG,,
+ 390Gsq + PGy + PoXGlo + 996Gy

The nine components G,,.,- -, G, may be deduced from the
five components G,,,---,G, w1th respect to the unit vectors

1y, ¥y, 8g, 84, 1, defined above, by using the relationships

4 By Gyy + %Gy

5o =cdy + 59

s =c'¥+5'q

ty=—s¥ + cq,
ty=~s"¥+c'¢f

where

= %[sinﬂcos ¥ —cos #sin ¥’ cos( ¢ — ¢")]
1. .. )
=3 sin#'sin(¢p — ¢)
1,. .
= ;[smﬂcosﬂ’cos((p — ¢’)—cos & sin 9]
1 .
s'= P sindsin(p — ¢)

v=v1-—u?

= \/1 ~ [sin & sin &’ cos(@ — ¢’) +cos ¥ cos #]° .

It is obtained

— J———
Grﬂ' =c Grs/ Grq)’ =g Grs’
— — ! ’ — ol ot
Gy =Gy Gop=cc'Gy +55'Gy Gy =cs'Gyy — s¢'G,
— — op’ ! — aa ’
G =5Gy,  Goy=3¢'Gp—¢s'G,  G,py =55'Gy + ¢C'G,.

APPENDIX I1

On application of the differential operators (26) to (18), we

obtain
GO = 1 i’ 2n3-|-3n2——5n—3_nr2+r’2 nP,(u)h""!
" 4ma S| (2n-1)(n+1) 24> 2n+3
GO =Y f 2n®+3n%—5n ﬁ
" 4ma S (2n—1)(n+1) 242
n(n+3)r? [Pk !
2An+1)a? 2n+3
1 X (2n®+3n2—5n-3)u
G\ = T 2on | = (2n+3)(2n—1)3
1
+(n+3)(r2+r’2)u_ﬁ Pi(u)h" !
(2n+3)2a2 n n+1
L1 2n* +3n* —5n -3
47a 1 2n—1
P24 | B (uw)h!
—n{n+3) o 13
GO — 1 f 27’ +3n* =51 =3  (n+3)(r* +r7?)
" dma T n(2n+3)(2n-1) (2n+3)2a?
’ n—1 00
+u_h Pn(”)h - 1 n})n(u)h"‘
n n+l N

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 5, MAY 1985

Making use of the recurrence formulas for Legendre polynomials,
these series may be cast into the form of (28), where

1 & nP(u)h" !

fl“ZZl'" 2n+3

nP,(u)h"""
n+1

N ACL
_“*Z" 2n+3

=] P/(u)hn 1
f4=Zn n+1 .

1

These series may be summed by relating them to the well-known
generating function for the Legendre polynomials

Z?l II( u)hn = (1 + h2 ‘—Zhu) 1/2 0

obtaining (29). As an example
X P(u)h"t g

- n g — Tol1)
f4_21n n+1 au Zn n(u) f h ]
1 0 dx
-l Z,, B(w)x | dx= ot " ——
1 3 V1-2hu+h*+h-u
h2 Ju 1—u )

For very small values of h, functions f,, f,, f;, and f, ¢an be
approximated by the first two terms of the corresponding defi-
ning series; furthermore, for values of u close to +1 (v=0),
functions f; and f, may be evaluated using the following for-
mulas:

for u=+1

1+sm,8]

fie 3 3—2h—5h% 3
? 8h2(1+ h)(1+ u) (1-h)* ~ 2sinf T 1-sinf

a l4sinB|1-u
1-sinB | 16

09|

. 55h% +241° +20* +24h 9 9
(1__ h)4 Zsinﬁ

£ 1 2[1” 1+2h2
(1+ u)(1— k) 21— h)

for u=—1

f= 3 [3+5h_ 33]
T 8n2(1+h)(1~u) |L 1+ sing

| 55K’ 4312 +33h+9 9B [1+u
(1+h)’ sin B

2(1+u)}.
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Characteristic Impedance Design Considerations for a
High-Speed Superconducting Packaging System

JIRO TEMMYO anp HARUO YOSHIKIYO

Abstract — The characteristic impedance influences of superconducting
packaging systems (in particular, Josephson packaging) on the degradation
in transmitted signal rise time, amplitude distortions and crosstalk, signal
propagation delay, and amplitude decay at the inductive and resistive
connectors with matched capacitors are quantitatively evaluated by using
the ASTAP computer simulation. The present choice of the characteristic
impedance Z;, =10-12 Q for a superconducting stripline is inadequate.
Higher impedances of Z;=40-50 Q are useful from the standpoint of
noise performance improvement. At the same time, a higher impedance
choice can make the ground connector numbers of each connector de-
crease, which is preferable for a large-scale packaging system.

1. INTRODUCTION

In order to realize high-performance computing systems utiliz-
ing high-speed devices, such as Josephson junction devices and
other high-speed semiconductor devices, it is necessary to use
high-density packaging systems with small wiring delays. The
clectrical problems in the packaging system are decreasing the
noise signals such as crosstalk and reflection at the various
connectors, and minimizing the packaging delay. A three-dimen-
sional superconducting packaging system consisting of supercon-
ducting striplines [1] and small connectors is useful for high-den-
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sity packaging because lossless superconducting lines have few
heating problems [2].

A matched-signal propagation system with superconducting
striplines has excellent features such as a broad transmission
frequency band and almost lossless characteristics. Conversely,
signal distortion problems occur compared with other lossy
packaging systems because the reflected signals and crosstalk do
not decrease {3]-[6]. Added delays due to a matched capacitor at
the inductive connectors, crosstalk between signal lines, and
signal decay at the resistive connectors decrease the system
operating margin,

On the other hand, electrical design considerations of a high-
speed semiconductor computer package have been carried out by
E. E. Davidson from the standpoint of system noise tolerance
performance {7]. However, noise performance of the supercon-
ducting packaging system from the standpoint of the characteris-
tic impedance influences on the system has not been determined.

The purpose of this paper is to clarify the optimum characteris-
tic impedance design method for superconducting packaging
systems, particularly the Josephson packaging system. The char-
acteristic impedance influences of superconducting packaging
systems on the noise performance, such as reflection and cross-
talk etc., which are caused by the inductive connectors, was
clarified by using the ASTAP [8] computer simulation. From the
relationships between the characteristic impedance Z; and noise,
delay performances are clarified as design charts. It is proposed
that present choices of Z,=10-12 € are not adequate and
higher values of Z, are superior from the standpoint of low noise
and small delay performances of the system using a high-output
superconducting driver and highly sensitive receiver circuits.

II. CIRCUIT SIMULATION

A schematic and electrical diagram of the chip-to-chip signal
path is shown in Fig. 1, where LS is the chip-to-card bonding [9],
[10] inductance,'L:r is the fillet [11] inductance, LY¢ is the
microconnector [12] inductance, and RS, Rf, and R¥C are the
interconnection resistance at the chip bonding, fillet, and micro-
connector, respectively. Except for the mutual inductance of M¢
at the chip bonding, other connector mutual inductances of M7
and MMC are omitted for simplicity. Z, is the superconducting
transmission-line impedance of the chip and the package. In a
small Josephson system experiment [13], the rise time of the
driver’s output signal was increased to about 100 ps by an LC
filter to reduce crosstalk and minimize the reflections from the
inductive discontinuities of the microconnectors. Here, in order
to reduce absolute values of self- and mutual-inductances, the
ratio of signal connectors to ground connectors was 1 for both
pins and fillets. However, the increase of that ratio is important
and necessary, particularly when the packaging system becomes
larger.

The signal reflection and crosstalk at the inductive connectors
are determined by the absolute value of the inductances and the
characteristic impedance Z;, as shown in Fig. 2. Time-domain
responses for the circuit of Fig. 1 are shown for the cases of
Z,=10 @ and 20 Q, using the ASTAP computer simulation. The
current traces of Nos. 1-6 show the current waveforms at the
portion Nos. 1-6 in Fig. 1 and the degradation of the transmitted
high-speed signal. Here, it is assumed that the Josephson driver is
approximated as a ramped input voltage positive going source.
The entire lossless superconducting stripline length at chips,
cards, fillets, and cards is a constant 4 mm, i.e., the propagation
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