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Fig. 11. Comparison of the C-band dusl-mode dielectric-function filter and a“

C-band air-filled dual-mode filter,
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Singularity Extraction from the Electric Green’s

Function for a Spherical Resonator

M. BRESSAN AND G. CONCIAURO

,4fi.wract—The electric dyadic Green’s function for a spherical resonator

is expressed as a sum of two dyadics given in closed forrtr and a dyadic

given in the fomr of a series. The first two dyadics diverge at ~e source

point and they represent a low-frequency approximation for the Green’s

function, vafid up to frequencies moderately lower than the resortant

frequency of the dominant mode. The dyadic given in the forar of a series

is finite at the source and takes into account cavity resonances. It is given

either as a one-index series, whose terms are transcendental functions of

the frequency, or as a double series, whose terms are rational functions of

the frequency. Both series have very good converging properties every-

where inside the cavity.

I. INTRODUCTION

The electric field at any point inside a cavity resonator bounded

by a perfectly conducting wall, filled with a linear, isotropic,

homogeneous medium with constitutive parameters c, p, and
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excited by time-harmonic (exp jti t) electric sources may be ex-

pressed as

E(r) = – jup lim J
~.J(r)

~,(r, r’, k). J(r’) du’– —
8-0 V–va juc

(1)

In this expression, r, r’ are the observation and the source points,

respectively, k = tifi, J is the current density, ~, is the dyadic

Green’s function of the electric type, V is the cavity volume, V. is

a principal volume about r having dimensions proportional to 8,
and, finally, ~ is a constant dyadic which is determined only
from the geometry of V8 [1]. Numerical calculations of E maybe

performed conveniently using a generalization of (l), differing

from it for Vd being allowed to be finite and for the inclusion of a

further integral over Va, involving G= [2].

Green’s functions for bounded regions are usually given in the

form of modal expansions, obtained by general procedures such

as those described by Tai [3] and Felsen–Marcuvitz [4]. Examples

of these expansions are given in [5]–[8] and in the next section.

Though being of great theoretical interest, such modal series are

unsuitable for use in numerical algorithms (moment method, for

instance) which require the computation of the electric field

inside the source ?egion. In this case, indeed, the Green’s function

must be computed at points r’ close to r, where the convergence

of the series is very poor due to the singularity of ~, at r’= r.

We recall that, in three-dimensional Green’s functions, this singu-

larity is of the order R-3, where R is the distance between the

source and the observation points.

This drawlback can be avoided by using expressions where a

diverging term, expressed in closed form, is extracted from the

modal expansion of ~e, so that the remaining series represents a

function finite at r’= r. This series, in fact, is expected to

converge very well everywhere. In this paper, we deduce an

expression of this type for a spherical resonator.
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In their general discussion on Green’s function for closed

regions, Howard and Seidel [9] considered the extraction of a

singular irrotational term which represents the quasi-static ap-

proximation of ~e. As explained in the following, the extraction

of this term permits one to enucleate the dominant singularity

(R- 3) of the Green’s function but, in spite of this, the residuaf

series still represents a function singular like R-1. For this

reason, though this series converges bet ter than the originaf one,

its convergence is still poor when r and r’ are close to each other.

A numerical example in this connection will be given at the end

of this paper.

In a recent work, Daniele and Orefice [10] considered a decom-

position of the Green’s function into two modaf series, the former

singular , the latter regular at the source As discussed in a

previous paper by Daniele [11], the particular form of the singu-

lar series permits one to transform (1) in such a way to avoid the

problems deriving from the nonintegrability of the singularity of

the Green’s function. Anyway, it is pointed out that, also after

this transformation, the integraf expression of the electric field

exhibits a kernel diverging like R-1. The series representing this

kernel is expected to have converging properties similar to those

of the Howard– Seidel residual series.

More recently [12], [13], we considered a new form of ~e

consisting of the sum of three terms

Ge=c, +c, +e: (2)

where ~, represents the irrotational part of ~e and ~~ + ~~’

represents its solenoidal part. Each of the three dyadics satisfies

the same boundary condition fulfilled by G,, that is,

nXC=O. (3)

For three-dimensionaf cavity resonators bounded by a single
conducting wall, the three dyadics are expressed as [13]

G,=–+ [&+go(r, r’)
1

G,=&
()

R* +Q!(r, r’)

~:=k?~ C,(r) e, (r’)

k,?(k:-k2)i

(4a)

(4b)

(4C)

where ~ is the unit dyadic, R = r — r’, go is a harmonic function

such that (1/4 n-R + gO)/( represents the electrostatic potential

generated inside the cavity by a unity point charge placed at r’,

~~ is a k-independent dyadic, everywhere finite and depending

on the boundary (the defining equation for ~,” is irrelevant for

the following discussion and it is not reported here), and e,, k,

are the normalized electric modal fields and the corresponding

resonant wavenumbers of the cavity.

The analysis reported in [13] permits one to state that the

diverging behavior of G, at R = O is dictated only by the R-

dependent terms in (4a, b). Then, the decomposition (2) is ad-

vantageous because the diverging term

— &7v’&+&
()

f+%
k2

is evidenced in closed form so that the remaining part of G, is

finite at R = O and, in principle, it maybe represented by rapidly

converging expressions.

It is noted that ~, explicitly exhibits the dominant singularity

of the Green’s function and coincides with the term extracted by

Howard and Seidel from the modaf expansion. It is evident that,

by extracting only this term, the weaker singularity ( R -1, is still

contained in the remaining part of ~,, as stated above.

It is also noted that our expression, like those proposed by

Howard– Seidel and by Daniele-Orefice, permits one to trans-

form (1) into an alternative expression not requiring the evalua-

tion of a principaf value integral, namely [13]

1‘(r)=–+vJv[&+go(r,r’)p(r’)di

Jjtip, ~[~,(r, r’)+ ~~(r, r’, k)] .J(r’) dv’ (5)

where p = —(v. .l)/jti represents the charge density. This ex-

pression may be recognized as the representation of the electric

field based on the scalar and the vector potentials in the Coulomb

gauge.

The case of a sphericaf resonator has been considered as an

example in the general discussion contained in [13], where a

method for the direct determination of go and ~~” has been

outlined. In the present work, we determine explicit expressions

for go, @, and ~~ for a spherical resonator and discuss the

converging properties of the expression of ~, so obtained. The

procedure followed to determine ~~ differs from that outlined in

[13] because it starts from the known modal expansion of ~= and

it does not require the solution of a new boundary value problem.

An interesting feature of our result is that go and ~,” are

found in closed form. Furthermore, ~,’ is determined either as a

rapidly converging resonant-mode double-series of the type (4c),

or as a more rapidly converging radially-guided-mode one-index

series. Due to their fast convergence, both of these series may be

truncated up to their first few terms without significant loss of

accuracy. When the resonant-mode series is truncated, the ob-

tained approxknation is a rational function of k2, a feature that

may be advantageous in treating some problems, as evidenced in

[14].

II. MODAL EXPANSION OF ~,

By following the general procedure described in [4, sees.

2.5,2.6, 2.7], one can obtain the Green’s function of a sphericaf

resonator of radius a (Fig. 1) in the form

G,=~(VX VXro)(V’XV’Xr~)S’

+(V Xro)(w’Xr’o)S” (r#r’). (6)

In this expression, r. and r~ are the unit vectors in the directions

of r and r’, respectively, and the functions S’ and S“ are given

by

zS,=l_ ~ 2n+l n 2(n–?n)! ,

477
y, ~ P“(coso)P#(cosi V)

~“ rz(n+l) ~n’ cti,(n+?n)! “

.cos[rn(q– q’)] (7a)

s,r=~f Zn+l n 2(n–f7z)! ~

4T -% Z.z Pn’(cos8)P:(coslY)
~“ n(?z+l) ~ c~,(n+rn)!

.COS[n’1(~ –9’)] (7b)

where r, 8, T; r’, 8’, p’ are the spherical coordinates of r and r’,

P,~’ are the associate Legendre functions, cm = 2 for m = (),

c ,), =1 form # 0: Functions ~ = ~,(r, r’, k) and Z,l = Z~(r, r’, k)

are the solutions of the equation

[

6’2

1( }

_+#@:l) : =~(r_r/)

dr2
(8)

1!
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Fig. 1. The sphere and the unit vectors at the observation and the source

points.

subject to the following boundary conditions:

~,, Z,, finite at r = O; ~~=0, Z~=Oatr=a. (9)

Functions ~, and Z,, maybe determined either in closed form or

as eigenfunction expansions. The closed-form solution has differ-

ent definitions in the intervals (O, r’) and (r’, a). For O < r < r’,
we obtain

Y .~[n:(/+ (kr’)- n,,(kr)ji(ka)] (lOa)
“ kj~ ( ka)

Z,, = *[n,,(ka) j~(kr’)- n~(kr’) j,,(ka)] (lOb)

where j,, and n~ are the spherical Bessel functions, defined as

and j,;, n; are their derivatives. For r’< r < a, the expressions
for ~, and Z,, are deduced from (10) by interchanging r and r’.
The solution in the form of eigenfunctions expansion has a

unique expression in the whole interval (O, a ), given by

where X,,P and X;,P are the zeros of j,, and j;, and

knP = X,,P /a k~p = x~P /a

(ha)

(llb)

are the resonant wavenumbers of the TE and TM resonant

modes, respectively.

It is noted that, for any value of the index n, the different

values of m denote n degenerate modes; their total contribution

may be taken into account by substituting the finite summation

in (7) with a single term, as permitted by the well-known “ad-

dition formula” for the associate Legendre functions. It is thus

obtained

m 2n+l
s’=~xn ~~z(u)

~ rz(n+l)

m 2n+l
s“ = & En znPn(u)

~ n(n+l)

where u = cos + (see Fig. 1) and P. functions

polynomials.

(12a)

(12b)

are Legendre

The explicit expression of ~, in the form of a modal expansion

may be obtained by applying term-wise the dyadic differential

operators appearing in (6) to the series representing S’ and S“.

Depending on the use of (10) or (11), two types of expansions are

obtained: in the form of a one-index series (radially-guided-mode
expansion) or of a double series (resonant-mode expansion).
Convergence properties of both series are poor. In fact, numericaf
calculations reveal that they convetge slowly for r close to r’. As

an example, when a =1, r = 0.49, r’= 0.5, ~ = 30°, convergence

of the one-index series is observed only after having added about

one thousand terms, whereas the same number of terms is Hot

sufficient to observe convergence in the case Of the double series.

It is worth noting that when r is not close to r’, the one-index

series converges fairly well, whereas the convergence of the dou-

ble series remains slow.

III. DETERMINATION OF go

The electrostatic potential generated inside a spherical cavity

by a unit charge placed at r’ is easily determined by image theory

and is given by

(13)

where R, = [ r2 + (a2/r’)2 —2r(a2/r’) U]1Z2 represents the dis-

tance between r and the image of the source point. Then,

comparing (13) with the argument of v v‘ in (4a), go is im-

mediately identified as

a—.
‘0= – 4vr’R,

-&[l-2hu+h2]-l/2 (14)

where

h=%.

IV. DETERMINATION OF ~~ IN FORM OF A SERIES

From (2), (4a), (4b), and (4c), we deduce

On substitution of (6) and (12), we have

(16)

From (10), we deduce

a* n()[
r/2 r2

—~, (r, r’, O)=* ~ — —
ak’ 2n–1–2n+3 1

‘2a3hn+l

[

2n3+3n2–5n–3

+ (n+l)(2n+l) (2; +3)(2 n-l)(n+l)

n(r2+r’2)—
2(2n +3)a2 1

()
n

Z,, (r, r’,0) =* ~ –&hn+l

(17a)

(17b)
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valid for O < r < r’. For r’< r < a, similar equations hold, with r

and r’ interchanged on the right-hand side.
As stated in the Introduction, the dyadic (16) satisfies the

boundary condition (3). Since the singular term on the left-hand
side of (16) does not depend on the boundary, it follows that the

regular dyadic ~,” must depend on the radius a, in order to

match the boundary condition. Moreover, due to the fact that the

singular term by itself satisfies the boundary condition in the

limiting case of an infinite radius, it is clear that ~~ must go to

zero when a goes to infinity. On the other hand, the series

obtained on substitution of (17a, b) into the right-hand side of

(16) may be split into the sum of two series, the former indepen-

dent of a, the latter going to zero when a diverges. The consider-

ations above permit one to associate ~,” with these last series,

that is to say,

C~=~(v XV Xro)(V’XV’Xr~)

(18)

It is noted that this expression has been derived from (17) valid

for O < r < r’. The expression for r’< r < a should be obtained

by interchanging r and r’. However, this interchange does not

modify the series in (18) so that this expression holds everywhere.

V. DETERMINATION OF ~;

From (2), (4a), (4b), and (4c), we find

On substitution of (6) and (15), we obtain

m 2n+l
i5{=(VX V’Xro)(V’X V’Xr~)&~n P.(u)u

~ rz(rz+l)

+(V Xro)(V’Xr~)*f,,

1

where

~ = ~,(r, r’, k)–~, (r, r’,O)
—

,,
k’

~,= Z,, (r, r’, k)– Z,l(r, r’,O).

Starting from (10), we obtain

2~+1 ~l(u)~ (20
n(n+l)

1 82
—~, (r, r’,0) (21a)

~ ~k2

(21b)

r “ ~+ r’2

(-) [

r r2—
2(2n +1) r’ k’ 2n–1–2n+3 I

.+1

[

n(r’+ r”)

+ (n+~~(2n+l) 2(2n +3)

2n3+3n2–5n–3

‘- (2n -l)(2n +3)(n+l) ‘2 ~’--I (22a)

-Z$i[rw”’”+’l ‘22b)

valid for O < r < r’. For r’< r < a, similar equations hold with r

and r‘ interchanged.

Alternative expressions are determined starting from (11)

(23a)

w
1 2j. ( k.Pr) j.( k.Pr’)

y,=k2~P z

1
knp(k:~ – k2) aj;-*(~.P) “ ‘23b)

Using these last expressions, (20) yields ~{ in form of a

resonant-mode expansion, similar to the general expression (4c).

VI. COMPONENTS OF G,

By symmetry considerations, it is evident that: a) a current

element at r’, lying on the plane of r and r’, gives place at r to

an electric field lying on the same plane; b) a current element at

r’, perpendicular to r and r’, givewplace at r to a field per-

pendicular to the same plane. For this reason, the number of

components of G, is reduced by referring the field and the source

to the directions of the unit vectors r., so, to and r~, s~, to,

respectively (see Fig. 1), where

r’Xr

‘O=\r’Xrl ‘o=toxro ‘&=toxri”
(24)

In fact, ~, maybe expressed by a form of the type

~, = ror~G,,. + ros~G,,, + sor{G,,, + sos~G,,, + totoGC~ (25)

which requires the specification of five components only. The

expressions which relate them to the nine components with

respect to the fundamental unit vectors of the spherical coordi-

nate system are reported in Appendix I.

By examining (14), (18), and (20), we see that the determina-

tion of the components of G, requires the differentiation of

functions depending only on the spatial variables r, r’, and u. It

may be shown that, when applied to a function of this type, the

dyadic differential operators involved in the calculation of ~,

may be expressed as follows:

# ,V # ,V i?’
‘v =‘or;drdr’ + ‘0s07 tlrdu – ‘oro~ dr’ilu

-w++’)+%: ‘26a)

(vxro)(v’x ri)=~~-~(u~+L) (26b)

(V XV Xro)(V’XV’Xr~) =ror~-&L2-ros&~LA

+ sor~~L
rr A-%%+%%

to to a’
+—

rr’ drtlr’au

where

It is noted that LPn(u) = – n(n +l)P~(u).

(26c)
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On use of formulas (2), (26), (4a), (4b), (14), (18), and (20), ~,

is determined in the form (25). We obtain

‘=*[*(2U-*)+3

(h3-h’u+ lm’-2h+zf)f: 1
‘M2U-%)+G’+G’(27a)

G,,, = . ~

[(
~ 1–3

)
‘rr’u +~(2h2 –hti-l)f;

4~k2 R3 R2 a’ 1
+8::( )—1+

r’ — rr’u
i- G,:, + G’, (27b)

G,,(r,r’,u, k) = –Gr~,(r’, r,u, k)

“ti[*(%-u)+;’’u-’’”~+”)”T’T

–-( )
— + G:, + G;, (27d)

‘87TR ‘+ R2

‘=-MH’’IL+:G’ (27e)

where fO is defined in (29a), and G:,, - .-, G:, and GJP,,”“ -, G~~
are the components of ~~” and ~~, respectively.

The series representing G:,.””, G: (deduced from (18)) CaUbe
summed (see Appendix II). It is obtained as follows:

[(
G~=& 3ti

u’ )
+h2+9 fl+f’+ ~fo

“(2-%)=f’l ‘28a)

( )[
G::=-~ 1–$ S“;;’-’f, + f41

[ 1-i%3+‘2‘r:2-2a2fo’ ‘28’)

c:,=* (l-;)(l-$)[3f1-uf3-. f4-~f,]

- ~ [U + hu’f~] (28c)

“=*(1-$ )(1-$ )’f’+f4]-*f0 ‘28d)

where

fo=(l-2hu+ ~’)-’/’ (29a)

[
fl=+ fo - ~(l:h)

(

F–2E+~

sinb fO)1 (29b)

[(

l/fo+h–u
f2=$ In

l–u )1
– hfo (29c)

f,= 3
[
(1+ U)(l+ h -2hu)fo

4u’h’(l+h)

1_(1-u) F+2uE ~29d)

sin ~

f.=~ [l+(hu-l)fo] (29e)

In these expressions, F= F( /3, K) and E = E(/3, K) repre-

sent the elliptic integrals of the first and second kind, respectiv-

=Y-

ely, of ar ument /? = arcsin [2W /(1 + h)] and modulus K

(1+ u)/2. It is noted that, in the limiting cases where h

and/or u vanish, (29b, c, d, e) are indeterminate. Anyway, an

accurate analysis reveals that fl, f2, f~, and fd remain finite and ,

that their values for small h and/or u can be calculated using the

formulas given in Appendix II.

The series representing the components of ~J (deduced from

(20)) are

(30a)

(30’)

( UP,; (u)
+ Pn(u)– )11 d’ u.

(30C)
n(n+l) rr’ drdr’

G;, =& f,, (2n +1)
[

H(u) l?2f,J,

1
n(n+l)rr’ 6’rdr’

(+~,(u)– HUP,; (u) Vn

n(n+l) 7
(30d)

where P,: denotes the derivative of ~,. On substitution of (22) or

(23) into (30), the components of G; are obtained either in the

form of a one-index series or in the form of a double series. For

the sake of shortness, we omit writing down these formulas,

whose derivation, however, is trivial. It is observed that the

one-index series have different definitions in the intervals (O, r’)

and (r’, a), whereas the double series have a unique definition

everywhere. The terms of the one-index series depend on k also

through the sphericaf Bessel functions, whereas the terms of the

double series are rational functions of k2. As expected, the

components of ~e diverge when k approaches any of the reso-

nating values knP or k~p defined above. The one-index series

diverge due to the denominators j. ( ka) and j~( ka) in (22). The
double series diverge due to the denominators k~P – k’ and

k~,~,– k’ in (23). When k is not coincident with a resonant

wavenumber, all series converge everywhere, r = r’ included.

It is noted that if the field is evaluated using (5), the only part

of ~, involved in ‘the calculation is ~, + G,’. The components of

this dyadic are recognized in the last three terms in each one of

the expressions of (27).

VII. CONVERGING PROPERTIES

The series representing the components of ~[ are too com-

plicated to permit a simple anrdysis of their converging proper-

ties. Then we base our discussion on some numerical results.

Diagrams in Fig. 2 represent successive approximations of the

component G,.j as a function of the computing time. The first

approximation (labeled with a) consists of the contribution of
the term proportional to k– 2 in (27a), i.e., the rr’ component of

the dyadic ~, in (2). The second approximation (labeled with b)

includes the w’ component of the dyadic ~~, i.e., it is obtained

by considering all the terms in (27a), except G:,,. Subsequent

approximations (labeled with c, d,”, “ ) are obtained by adding

each time a new term of the series representing G~,, ((30a)) in the

form of a one-index series (continuous line) or of double sefies
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Fig. 2. Successive approximations of G,,, as a function of computing time,

for different vatues of k

(dashed line). In the case of the double series, the terms are

added in order of increasing resonant wavenumbers. The radius

of the resonator and the positions of the observation and source

points are the same in the three cases considered in Fig. 2(a), (b),

and (c), whereas the values of k are different from one another.

In the case of Fig. 2(a), the frequency is moderately lower than

the resonant frequency of the dominant mode (k = k~l/5). In

this diagram, the dashed line was not reported, being nearly

coincident with the continuous line. It is noted that the ap-

proximation b is fairly good, i.e., the contribution of G;,, maybe

neglected without a significant error.

In the case of Fig. 2(b), the frequency is fairly close to the

frequency of the dominant mode (k= 0.8 k~l ). Both series repre-

senting G;,, converge very rapidly and the largest contribution

derives from their first term, which takes into account the domin-

ant resonance. It is noted that about three terms of both series

are needed to achieve an acceptable precision.

In the case of Fig. 2(c) (k= 5k~1 ), the frequency exceeds the

resonant frequencies of thirty-nine modes and it is close to the

frequency of the TM72 mode. For this reason, the largest term in

-,65
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Fig. 3. Successive approximations of two expressions of G,,, in the form of a

one-index series. Diagram a: (31). D1agrarn b: (2).
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Fig. 4. Successive approximations of two expressions of G,,, m form of
double series. Diagranr a: (31). Diagram b: (2).

the one-index series is the seventh, whereas the largest term in the

double series is the thirty-riinth. The series converge rapidly after

the seventh or the thirty-ninth terms, respectively. It is noted

that, when k increases, the number of significant terms increases
more rapidly in the double series than in the one-index series.

Numerical tests carried out for different positions of the ob-

servation and the source points showed that converging proper-

ties are not affected significantly by changes in these positions.

Similar resuhshave been found fortheother components of G=.

In order to ascertain the utility of extracting the weakly singu-

lardyadic ~, from ~,, besides thestrongly singular dyadic ~,,

converging properties of our expressions have been compared

with those of different expressions deriving from a representation

of C, of the type

(31)

where ~. (i.e., the solenoidal part of ~,, formerly split into ~,

and ~,’) is expressed by a modal series, obtained by introducing

(6), (12), and (10) or (11) into the formula

Also, ~c may be obtained in the form of a one-index or of a

double series, depending ontheuse of(lO)or(ll). It is pointed

out that (31) has the same form considered by Howard and Seidel

[9]. Figs. 3 and4 show that the convergence of the component

G,,, derived from (31) (diagrams a) is much slower than the

convergence of the same component in the form derived from (2)

(diagrams b). This is true either in the case when Go and G; are

represented by the one-index series (Fig. 3) or when they are

represented by the double series (Fig. 4). As said in the introduc-

tion, the slower convergence of (31) is ascribed to the inclusion of

the singularity R-1 in the series representing CV.
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APPENDIX I

The dyadic ~e, referred to the fundamental unit vectors of the

spherical coordinate system, has the form

~= = r. r~G,,t + r. 8~Gyo, + rorp~G,wt+ & r~Go,! + ~o&~Gaa,

+ ~oqioGap, + qroriGw,, + CPO&@qW + TJOC+%GVP,.

The nine components G,,,,. . . . Gvv, may be deduced from the

five components G,,.,. . . . G,f with respect to the unit vectors

rO>ri t so >S4, tO defined above, by using the relationships

so = co. +Srpo to = – S$o + Crpo

s~ = c’$~ + S’qo to = – s’s~ + C’qfo

where

c=~[sin $cos O’–cosil sin Wcos(q–rp’)]

s=~sin~’sin(q–q’)

“[
c’= 1 sinilcosil’cos(~ – rf’)-cos~sin ~’]

s’=~sin $sin(rp-rp’)

~= I.-.uz

=~1-[sin8sinr$cos(q- @)+cosOcosO]2.

It is obtained

G,,yt = C’GV, Grv = s’G,,

G,%rr= cG,,, ,~! + ss’Gl,G@ar= CC’G GOW,= CS’G3r, — SC’Grl

Gp,t = sG,,r GPO,= SC’G~, – CS’Gt, Gvv, = SS’G,, + CC’G,,.
.

APPENDIX H

On application of the differential operators (26) to (18), we

obtain

G:.r = &
2n3+3n2–5n–3

~“[~-l)(n+l)

r2 + r’2 1nP,, (u)hn-*

– n 2a2 2n+3

2n3 +3n2 –5n nr2G:, =
* ;“ [Zl)(n +1) 2.’

1n(n+3)r’2 P,~(a)h”-l—

2(n+l)a2 2n+3

G:,, =
(2n3+3n2-5n:3)z4

~~”[- (2rt+3)(2n-l)n

1+(n+3)(r2+r’2)u h fi(u)h”-l——

(2n +3)2a2 n n+l

+&frl[
2n3+3n2–5n–3

2n–1
1

r2 + r’2

1

~,(u) h”-l
n(n+3)—

2a2 2.+3

G: = m 2n3+3n2-5n -3_(n+3)(r2+r’2)

*>[n(2n+3)(2n -1) (2n+3)2a2

1+~ P;(u) h”-l
‘~ ~,(u) h”.

n n+l ‘47ra ~“

Making use of the recurrence formulas for Legendre polynomials,

these series may be cast into the form of (28), where

m nP,, (u)hn-l
~l=$Z 2n+3

1

These series may be summed by relating them to the well-known

generating function for the Legendre polynomials

~,, ~,(U)h’z= (1+ h2 -2hu)-l/2=fo

o

obtaining (29). As an example

i~+h-u
=Azln

h2 c?U l–u

For very small values of h, functions fl, f2, f3, and fd c%n be

approximated by the first two terms of the corresponding defi-

ning series; furthermore, for values of u close to + 1 (o = O),

functions f~ and fa may be evaluated using the following for-

mulas:

for u=+l

f3 =
3

([

3–2h–5h2 3 In l+sin~

8h2(l+ h)(l+ U) (1-h)2 - 2sin~ l-sin~ 1
[ H+ 55h4+24.h3 +2h2+24h–9 9 *nl+sin@ 1–u

—— _

(1-h)’ + 2sinj3 l–sin~ 16

f4= 1
[

~_ l+2h
2(1-”)

(l+u)(l-h)2 2(1–h) 1
for u=–1

f3 =

3

{[

3+5h 3/3

8h2(l+h)(l–u) l+h ‘sin~ 1

[ 1)55h3+31h2+33h +9+ 9/3 l+u— ——

(l+h)3 sinfi 16

f4= 1—

[

~_ l–2h

1

(l+U) .
(1-u) (l+h)’ 2(l+h)2
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Characteristic Impedance Design Considerations for a

High-Speed Superconducting Packaging System

JIRO TEMMYO AND HARUO YOSHIKIYO

Abstract —The characteristic impedance influences of superconducting

packaging systems (in particular, Josephson packaging) on the degradation

in transmitted signal rise time, amplitude distortions and crosstalk, signal

propagation delay, and amplitude decay at the inductive and resistive

connectors with matched capacitors are quantitatively evaluated by using

the ASTAP computer simulation. The present choice of the characteristic

impedance 20 = 10– 12 $2 for a superconducting stripline is inadequate.

Higher impedances of 20 = 40–50 Q are useful from the standpoint of

noise performance improvement. At the same time, a higher impedance

choice can make the ground connector numbers of each connector de-

crease, which is preferable for a large-scale packaging system.

I. INTRODUCTION

In order to realize high-performance computing systems utiliz-

ing high-speed devices, such as Josephson junction devices and

other high-speed semiconductor devices, it is necessay to use

high-density packaging systems with small wiring delays. The

electrical problems in the packaging system are decreasing the

noise signals such as crosstalk and reflection at the various

connectors, and minimizing the packaging delay. A three-dimen-

sional superconducting packaging system consisting of supercon-

ducting striplines [1] and small connectors is useful for high-den-

Manuscript received July 27, 1984; revised January 4, 1985.
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sity packaging because lossless superconducting lines have few

heating problems [2].

A matched-signaf propagation system with superconducting

striplines has excellent features such as a broad transmission

frequency band and almost lossless characteristics. Conversely,

signaf distortion problems occur compared with other lossy

packaging systems because the reflected signals and crosstalk do

not decrease [3]–[6]. Added delays due to a matched capacitor at

the inductive connectors, crosstalk between signal lines, and

signal decay at the resistive connectors decrease the system

operating margin.

On the other hand, electrical design considerations of a high-

speed semiconductor computer package have been carried out by

E. E. Davidson from the standpoint of system noise tolerance

performance [7]. However, noise performance of the supercon-

ducting packaging system from the standpoint of the characteris-

tic impedance influences on the system has not been determined.

The purpose of this paper is to clarify the optimum characteris-

tic impedance design method for superconducting packaging

systems, particularly the Josephson packaging system. The char-

acteristic impedance influences of superconducting packaging

systems on the noise performance, such as reflection and cross-

talk etc., which are caused by the inductive connectors, was

clarified by using the ASTAP [8] computer simulation. From the

relationships between the characteristic impedance 20 and noise,

delay performances are clarified as design charts. It is proposed

that present choices of 20 = 10–12 L? are not adequate and

higher values of 20 are superior from the standpoint of low noise

and small delay performances of the system using a high-output

superconducting driver and highly sensitive receiver circuits.

II. CIRCUIT SIMULATION

A schematic and electrical diagram of the chip-to-chip signal

path is shown in pg. 1, where L: is the chip-to-card bonding [9],
F is the fillet [11] inductance, L~c is the[10] inductance, L,

microconnector [12] inductance, and R$, R:, and R ~c are the

interconnection resistance at the chip bonding, fillet, and micro-

connector, respectively. Except for the mutuaf inductance of M,C

at the chip bonding, other connector mutual inductances of M,?

and kf,~c are omitted for simplicity. 20 is the superconducting

transmission-line impedance of the chip and the package. In a

small Josephson system experiment [13], the rise time of the

driver’s output signal was increased to about 100 ps by an LC

filter to reduce crosstalk and minimize the reflections from the

inductive discontinuities of the microconnectors. Here, in order

to reduce absolute values of self- and mutual-inductances, the

ratio of signal connectors to ground connectors was 1 for both

pins and fillets. However, the increase of that ratio is important

and necessary, particularly when the packaging system becomes

larger.
The signal reflection and crosstalk at the inductive connectors

are determined by the absolute value of the inductances and the

characteristic impedance 20, as shown in Fig. 2. Time-domain

responses for the circuit of Fig. 1 are shown for the cases of

Zc) =10 ~ and 20 G?,using the ASTAP computer simulation. The

current traces of Nos. 1–6 show the current waveforms at the

portion Nos. 1–6 in Fig. 1 and the degradation of the transmitted

high-speed signal. Here, it is assumed that the Josephson driver is

approximated as a ramped input voltage positive going source.

The entire lossless superconducting stripline length at chips,

cards, fillets, and cards is a constant 4 mm, i.e., the propagation
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